Divergence between sea urchins and their microbiota following speciation
-
Published:2024-05-05
Issue:6
Volume:171
Page:
-
ISSN:0025-3162
-
Container-title:Marine Biology
-
language:en
-
Short-container-title:Mar Biol
Author:
Carrier Tyler J.ORCID, Schwob Guillaume, Ketchum Remi N., Lessios Harilaos A., Reitzel Adam M.
Abstract
AbstractAnimals have a deep evolutionary relationship with microbial symbionts, such that individual microbes or an entire microbial community can diverge alongside the host. Here, we explore these host-microbe relationships in Echinometra, a sea urchin genus that speciated with the Isthmus of Panama and throughout the Indo-West Pacific. We find that the eggs from five Echinometra species generally associate with a species-specific bacterial community and that the relatedness of these communities is largely congruent with host phylogeny. Microbiome divergence per million years was higher in more recent speciation events than in older ones. We, however, did not find any bacterial groups that displayed co-phylogeny with Echinometra. Together, these findings suggest that the evolutionary relationship between Echinometra and their microbiota operates at the community level. We find no evidence suggesting that the associated microbiota is the evolutionary driver of Echinometra speciation. Instead, divergence between Echinometra and their microbiota is likely the byproduct of ecological, geographic, and reproductive isolations.
Funder
National Science Foundation Smithsonian Institute Alexander von Humboldt-Stiftung Deutsche Forschungsgemeinschaft National Fund for Scientific and Technological Development Millennium Science Initiative Program Human Frontier Science Program GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2:e00191–00116 2. Björk J, Díez-Vives C, Astudillo-García C, Archie E, Montoya J (2019) Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat Ecol Evol 3:1172–1183 3. Bogdanowicz D, Giaro K, Wróbel B (2012) TreeCmp: comparison of trees in polynomial time. Evol Bioinform 8:475–487 4. Bolyen E, Rideout J, Dillon M, Bokulich N, Abnet C, Al-Ghalith G, Alexander H, Alm E, Arumugam M, Asnicar F, Bai Y, Bisanz J, Bittinger K, Brejnrod A, Brislawn C, Brown C, Callahan B, Caraballo-Rodríguez A, Chase J, Cope E, Da Silva R, Dorrestein P, Douglas G, Durall D, Duvallet C, Edwardson C, Ernst M, Estaki M, Fouquier J, Gauglitz J, Gibson D, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G, Janssen S, Jarmusch A, Jiang L, Kaehler B, Kang K, Keefe C, Keim P, Kelley S, Knights D, Koester I, Kosciolek T, Kreps J, Langille M, Lee J, Ley R, Liu Y, Loftfield E, Lozupone C, Maher M, Marotz C, Martin B, McDonald D, McIver L, Melnik A, Metcalf J, Morgan S, Morton J, Naimey A, Navas-Molina J, Nothias L, Orchanian S, Pearson T, Peoples S, Petras D, Preuss M, Pruesse E, Rasmussen L, Rivers A, Robeson M II, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song S, Spear J, Swafford A, Thompson L, Torres P, Trinh P, Tripathi A, Turnbaugh P, Ul-Hasan S, van der Hooft J, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber K, Williamson C, Willis A, Xu Z, Zaneveld J, Zhang Y, Zhu Q, Knight R, Caporaso J (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857 5. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230
|
|