Abstract
AbstractWhile most coastal communities are expected to, or have been, negatively impacted by climate change, cephalopods have generally thrived with shifting ocean conditions. However, whilst benefitting from the same physiological flexibility that characterizes cephalopods in general, cuttlefish have depth constraints imposed by the presence of a cuttlebone and are limited to specific locations by their particularly low vagility. To evaluate the potential effects of marine climate change on cuttlefish, Species Distribution Models (SDM) were applied to nine species of genus Sepiidae to assess potential changes to their future distribution (2050 and 2100), under four representative concentration pathway (RCP) scenarios (i.e., RCP 2.6, 4.5, 6.0, and 8.5; CMIP5). We show that future cuttlefish habitat suitability and distribution will potentially decrease. The species with the most extreme impacts, Doratosepion braggi (Verco, 1907), was observed to decline as much as 30.77% in average habitat suitability (from present 55.26% to 24.48% at RCP 8.5 in 2100), to Sepia officinalis Linnaeus, 1758 with a low maximum decrease of 1.64% in average habitat suitability (from present 59.62% to 57.98% at RCP 8.5 in 2100). Increases in habitat suitability were projected mostly at higher latitudes, while habitat decrease was predicted for the tropical regions and lower latitudinal limits of species’ distributions. As their habitats decrease in terms of habitat suitability, cuttlefish may not benefit from future changes in climate. Additionally, as potential “sea canaries” for coastal ecosystems, we may see many species and habitats from these systems affected by climate change, particularly in tropical regions.
Funder
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献