Extracellular phosphoesterases of invertebrate origin: underrated actors in phosphorus recycling?

Author:

Böök Imke Maiken,Saborowski ReinhardORCID

Abstract

AbstractExtracellular enzymes contribute substantially to the remineralisation of organic matter in aquatic systems. Marine invertebrates release endogenous enzymes through activities such as sloppy feeding or egestion, but the significance of such processes is widely unexplored. We compared functional key properties such as activity, stability, and apparent molecular masses of extracellular phosphatases from faeces of the marine crustaceans Idotea balthica, Palaemon varians, and Homarus gammarus with those of their digestive organs. A fluorescent substrate was used to examine enzyme activity qualitatively on agarose plates and quantitatively in microplate assays. Apparent molecular masses and enzyme stability were examined by native substrate gel electrophoresis (NSGE). Active extracellular phosphatase were present in the faeces of all tested species. NSGE activity band patterns were similar in digestive tissue extracts and faeces extracts. The initial enzyme activity retained for about 2 days, but thereafter rapidly decreased. Activity band patterns of digestive organs and faeces of I. balthica remained consistent for up to 72 h. Antibiotic treatment did not reduce phosphatase activity in the faeces of I. balthica and H. gammarus but in the faeces P. varians. Because of the comparatively high activities in the faeces, the electrophoretic similarity between faeces and digestive organs, and the limited durability of the enzymes in faeces extracts, we conclude that the studied crustaceans release predominantly endogenous, rather than bacterial phosphatases through faeces. These can substantially contribute to the pool of active extracellular phosphatases and the recycling of phosphorus in aquatic systems. The wider physiological and ecological context is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3