Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth’s oblateness on Galileo satellites

Author:

Colmenero Neus Puchades,Córdoba José Vicente Arnau,Fullana i Alfonso Màrius JosepORCID

Abstract

AbstractUncertainties in the satellite world lines lead to dominant positioning errors. In the present work, using the approach presented in Puchades and Sáez (Astrophys. Space Sci. 352, 307–320, 2014), a new analysis of these errors is developed inside a great region surrounding Earth. This analysis is performed in the framework of the so-called Relativistic Positioning Systems (RPS). Schwarzschild metric is used to describe the satellite orbits corresponding to the Galileo Satellites Constellation. Those orbits are circular with the Earth as their centre. They are defined as the nominal orbits. The satellite orbits are not circular due to the perturbations they have and to achieve a more realistic description such perturbations need to be taken into account. In Puchades and Sáez (Astrophys. Space Sci. 352, 307–320, 2014) perturbations of the nominal orbits were statistically simulated. Using the formula from Coll et al. (Class. Quantum Gravity. 27, 065013, 2010) a user location is determined with the four satellites proper times that the user receives and with the satellite world lines. This formula can be used with any satellite description, although photons need to travel in a Minkowskian space-time. For our purposes, the computation of the photon geodesics in Minkowski space-time is sufficient as demonstrated in Puchades and Sáez (Adv. Space Res. 57, 499–508, 2016). The difference of the user position determined with the nominal and the perturbed satellite orbits is computed. This difference is defined as the U-error. Now we compute the perturbed orbits of the satellites considering a metric that takes into account the gravitational effects of the Earth, the Moon and the Sun and also the Earth oblateness. A study of the satellite orbits in this new metric is first introduced. Then we compute the U-errors comparing the positions given with the Schwarzschild metric and the metric introduced here. A Runge-Kutta method is used to solve the satellite geodesic equations. Some improvements in the computation of the U-errors using both metrics are introduced with respect to our previous works. Conclusions and perspectives are also presented.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3