Plasma/Ozone Induced PolyNaSS Graft-Polymerization onto PEEK Biomaterial for Bio-integrated Orthopedic Implants

Author:

Karthik Chandrima,Pillai Renjith Rajan,Moreno Gerardo Hernandez,Sikder Prabaha,Ambalavanan Namasivayam,Thomas VinoyORCID

Abstract

AbstractOwing to its superior bulk mechanical properties, poly (ether ether ketone) (PEEK) has gained popularity over the past 15 years as a metal substitute in biomedical implants. Low surface energy is a fundamental issue with PEEK implants. This low surface energy caused by a moderately hydrophobic surface may be able to inhibit cellular adherence and result in the development of an inflammatory response, which may result in cell necrosis and apoptosis. In this work, plasma and ozone treatments have been utilized to surface activate PEEK and graft ionic bioactive polymer polyNaSS (poly (sodium styrene sulfonate)) successfully on the surface to promote cellular attachment and biomineralization. The main goal of our research has been to find a stable green process for surface modification of PEEK by plasma/ozone approaches to increase PolyNaSS grafting efficiency and biomineralization. To further the field of bioactive orthopedic and dental implant technology, this research attempts to address a significant constraint of PEEK implants while preserving their favorable mechanical properties.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3