Study of Solidification Process of Ni-Based Superalloy Castings Manufactured in Industrial Conditions with the Use of Novel Thermal Insulating Module Technique

Author:

Szeliga DariuszORCID,Motyka Maciej,Ziaja Waldemar,Cygan Rafał,Fuglewicz Sylwester,Gromada Magdalena

Abstract

AbstractThe solidification process of IN713C Ni-based superalloy rod castings made by the investment casting method without and with the use of novel insulating module applied on the ceramic mold was studied in this article. The design of the cone-shaped insulating module was developed based on numerical simulations of the distribution of local solidification parameters, ensuring the lowest centerline shrinkage porosity along the castings. The effectiveness of the design of the insulating module was tested in industrial casting trials. It was found that the use of a novel insulation module increases temperature gradient G and decreases cooling rate v, thus leading to a favorable increase of the Niyama criterion value (Ny = G/√v) and also ensuring directional solidification of the casting rod compared to the process where thermal insulation was not used. In this way, the centerline shrinkage porosity was removed, maintaining the equiaxed grain structure of the castings. The presented results show that it is possible to use the same insulating module multiple times, in the subsequent manufacturing processes, to control the solidification of Ni-based superalloy precision castings in industrial conditions.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3