Toward a Standard Data Architecture for Additive Manufacturing

Author:

Li ShengyenORCID,Feng Shaw,Kuan Alexander,Lu Yan

Abstract

AbstractTo advance additive manufacturing (AM), a scalable architecture is needed to structure, curate and access the data from AM R&D projects that are conducted to evaluate new materials, processes and technologies. Effective project metadata management enables the sharing of AM domain knowledge. This work introduces an AM data modeling architecture to capture pedigree information from AM projects which enables the traceability of the material. This overall AM model includes five modules covering information about (1) project management, (2) feedstock materials, (3) AM building and post processing, (4) microstructure and properties measurements and (5) computer simulations. The objective of this design is to ease the integration of the heterogeneous datasets from different sources and allow for extensions, for example, to incorporate sub-models from other efforts. As a proof of concept, the material and process models defined in the paper capture the major metadata elements for laser powder bed fusion AM. To demonstrate the effectiveness of the architecture, the models are implemented using extensible markup language and preliminarily tested using the project data from America Makes. Additional data sub-models can be integrated in this architecture without affecting the existing structure.

Funder

America Makes

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. https://www.iso.org/standard/72312.html.

2. R. Arp and B. Smith, Nat. Preced. 1 (2008).

3. M. Karray, N. Otte, R. Rai, F. Ameri, B. Kulvatunyou, B. Smith, D. Kiritsis, C. Will, and R. Arista, in Industrial Ontology Foundry (IOF) Achieving Data Interoperability Workshop (2021).

4. S.P. Voigt, and S.R. Kalidindi, Mater. Lett. 295, 129836 (2021).

5. T. Ashino, Data Sci. J. 9, 54 (2010).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3