Characterization of Fe-6Si Soft Magnetic Alloy Produced by Laser-Directed Energy Deposition Additive Manufacturing

Author:

Adamczyk Jesse M.,Birchall Sarah E.,Rothermel Ethan T.,Whetten Shaun R.,Barrick Erin J.,Pearce Charles J.,Delaney Robert E.,Pegues Jonathan W.,Johnson Kyle L.,Susan Donald F.,Monson Todd C.,Kustas Andrew B.

Abstract

AbstractCommercial electrical steels, Fe-Si alloys with < 4 wt.% Si, are inexpensive and efficient materials for electrical power conversion. Further efficiency improvements require increasing the silicon concentration to 6 wt.%, at which point the material becomes brittle and difficult to form by conventional rolling and sheet fabrication methods. Additive manufacturing stands to overcome challenges with commercial manufacturing techniques by leveraging near-net-shape fabrication. The wide array of process conditions provides additive manufacturing with increased flexibility, enabling control over the microstructure and mechanical properties. This work explores the microstructures and magnetic properties of ring-shaped Fe-Si alloys produced using concentric and cross-hatch tool paths on a laser-directed energy deposition additive manufacturing system. Concentric-built samples exhibit elongated grain structures while cross-hatch-built samples comprise lower aspect ratio grain structures. Thermal finite element analysis simulations model the stress conditions produced by the different scan path geometries. Microhardness measurements probe the mechanical properties as a function of anneal temperature, providing a qualitative understanding of the intergranular defect density. Soft magnetic properties measured under quasistatic and AC conditions show frequency- and microstructure-dependent coercivity and permeability. Finally, analysis of the core loss quantifies how the build strategies and thermal treatments influence efficiency in electrical power conversion applications. Understanding the influences of scan path geometry and thermal treatment provides a pathway towards application of additively manufactured soft magnetic materials.

Funder

National Nuclear Security Administration

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3