1. Åhman, M., Nilsson, L. J., & Johansson, B. (2017). Global climate policy and deep decarbonization of energy-intensive industries. Climate Policy, 17(5), 634–649. https://doi.org/10.1080/14693062.2016.1167009
2. Alsema, E. A. (2000). A database of energy reduction options for the Netherlands, 1995–2020. Sector study for the Non-Ferrous Metals Industry [Report nr. NWS-E-2000–08]. Department of Science, Technology and Society, Utrecht University. https://www.semanticscholar.org/paper/ICARUS-4-%3Aa-database-of-energy-reduction-options-%3A-Alsema/fe9914486df216bc250d98b66526f64f42b6fb4f
3. Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., Solano-Rodriquez, B., Denis-Ryan, A., Stiebert, S., Waisman, H., Sartor, O., & Rahbar, S. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 187, 960–973. https://doi.org/10.1016/j.jclepro.2018.03.107
4. Bazzanella, A. M., & Ausfelder, F. (2017). Low carbon energy and feedstock for the European chemical industry. The European Chemical Industry Council (CEFIC). https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_Europen_chemical_industry.pdf
5. Boulamanti, A., & Moya, J. A. (2017). Energy efficiency and GHG emissions_Prospective scenarios for the Chemical and petrochemical industry. Publications Office of the European Union. https://data.europa.eu/doi/10.2760/20486