Energy efficiency potentials in the EU industry: impacts of deep decarbonization technologies

Author:

Kermeli KaterinaORCID,Crijns-Graus Wina,Johannsen Rasmus Magni,Mathiesen Brian Vad

Abstract

AbstractIncreasing the energy efficiency in high energy demand sectors such as industry with a high reliance on coal, oil and natural gas is considered a pivotal step towards reducing greenhouse gas emissions and meeting the Paris Agreement targets. The European Commission published final energy demand projections for industry capturing current policies and market trends up to 2050. This Reference scenario for industry in 2050, however, does not give insights into the extent to which energy efficiency potentials are already implemented, in which sectors further efficiency can be achieved, to what extent or with which technologies. In this paper, the EU Reference scenario is broken down and compared to a Frozen Efficiency scenario with similar GDP developments but without energy efficiency. Through bottom-up analyses, it is found that with energy efficiency technologies alone, this Reference scenario for industry energy demands (10.6 EJ in 2050) cannot be achieved. That means that the EU Reference assumes higher energy efficiency than possible and too high an effect of current policies. In the Frozen Efficiency scenario, the energy demand reaches 14.2 EJ in 2050 due to the GDP development; 22% higher than 2015. Energy efficiency improvements and increased recycling can decrease industrial energy demand by 23% (11.3 EJ in 2050). In order to further reduce the energy demand, our analyses shows that the wide implementation of innovative in combination with electrification or hydrogen technologies can further decrease the 2050 energy demand to 9.7 EJ or 10.3 EJ, respectively.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

General Energy

Reference56 articles.

1. Åhman, M., Nilsson, L. J., & Johansson, B. (2017). Global climate policy and deep decarbonization of energy-intensive industries. Climate Policy, 17(5), 634–649. https://doi.org/10.1080/14693062.2016.1167009

2. Alsema, E. A. (2000). A database of energy reduction options for the Netherlands, 1995–2020. Sector study for the Non-Ferrous Metals Industry [Report nr. NWS-E-2000–08]. Department of Science, Technology and Society, Utrecht University. https://www.semanticscholar.org/paper/ICARUS-4-%3Aa-database-of-energy-reduction-options-%3A-Alsema/fe9914486df216bc250d98b66526f64f42b6fb4f

3. Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., Solano-Rodriquez, B., Denis-Ryan, A., Stiebert, S., Waisman, H., Sartor, O., & Rahbar, S. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 187, 960–973. https://doi.org/10.1016/j.jclepro.2018.03.107

4. Bazzanella, A. M., & Ausfelder, F. (2017). Low carbon energy and feedstock for the European chemical industry. The European Chemical Industry Council (CEFIC). https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_Europen_chemical_industry.pdf

5. Boulamanti, A., & Moya, J. A. (2017). Energy efficiency and GHG emissions_Prospective scenarios for the Chemical and petrochemical industry. Publications Office of the European Union. https://data.europa.eu/doi/10.2760/20486

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3