Data centres in future European energy systems—energy efficiency, integration and policy

Author:

Koronen Carolina,Åhman MaxORCID,Nilsson Lars J

Abstract

AbstractEnd-use efficiency, demand response and coupling of different energy vectors are important aspects of future renewable energy systems. Growth in the number of data centres is leading to an increase in electricity demand and the emergence of a new electricity-intensive industry. Studies on data centres and energy use have so far focused mainly on energy efficiency. This paper contributes with an assessment of the potential for energy system integration of data centres via demand response and waste heat utilization, and with a review of EU policies relevant to this. Waste heat utilization is mainly an option for data centres that are close to district heating systems. Flexible electricity demand can be achieved through temporal and spatial scheduling of data centre operations. This could provide more than 10 GW of demand response in the European electricity system in 2030. Most data centres also have auxiliary power systems employing batteries and stand-by diesel generators, which could potentially be used in power system balancing. These potentials have received little attention so far and have not yet been considered in policies concerning energy or data centres. Policies are needed to capture the potential societal benefits of energy system integration of data centres. In the EU, such policies are in their nascent phase and mainly focused on energy efficiency through the voluntary Code of Conduct and criteria under the EU Ecodesign Directive. Some research and development in the field of energy efficiency and integration is also supported through the EU Horizon 2020 programme. Our analysis shows that there is considerable potential for demand response and energy system integration. This motivates greater efforts in developing future policies, policy coordination, and changes in regulation, taxation and electricity market design.

Funder

CICEP

Publisher

Springer Science and Business Media LLC

Subject

General Energy

Reference77 articles.

1. Acton, M., Bertoldi, P., Booth, J., Newcombe, L., Rouyer, A., & Tozer, R. (2018). 2018 Best Practice Guidelines for the EU Code of Conduct on Data Centre Energy Efficiency. EUR 29103 EN. Luxembourg: Publications Office of the European Union.

2. Andrae A. (2018). Should we be concerned about the power consumption of ICT? Presentation at the Around the World Sustainable Research e-Conference, Alberta, Canada, May 4.

3. Andrae, A., & Edler, T. (2015). On global electricity usage of communication technology: trends to 2030. Challenges, 6, 117–157.

4. Artelys. (2017). Cleaner, smarter, cheaper – responding to opportunities in Europe’s changing energy system. Available online: https://www.energyunionchoices.eu/cleanersmartercheaper/

5. Avgerinou, M., Bertoldi, P., & Castellazzi, L. (2017). Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency. Energies, 10(10), 1470. https://doi.org/10.3390/en10101470.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3