The potential of decentral heat pumps as flexibility option for decarbonised energy systems

Author:

Schöniger FranziskaORCID,Mascherbauer PhilippORCID,Resch GustavORCID,Kranzl LukasORCID,Haas ReinhardORCID

Abstract

AbstractDecarbonising the energy system requires high shares of variable renewable generation and sector coupling like power to heat. In addition to heat supply, heat pumps can be used in future energy systems to provide flexibility to the electricity system by using the thermal storage potential of the building stock and buffer tanks to shift electricity demand to hours of high renewable electricity production. Bridging the gap between two methodological approaches, we coupled a detailed building technology operation model and the open-source energy system model Balmorel to evaluate the flexibility potential that decentral heat pumps can provide to the electricity system. Austria in the year 2030 serves as an example of a 100% renewable-based electricity system (at an annual national balance). Results show that system benefits from heat pump flexibility are relatively limited in extent and concentrated on short-term flexibility. Flexible heat pumps reduce system cost, CO2 emissions, and photovoltaics and wind curtailment in all scenarios. The amount of electricity shifted in the assessed standard flexibility scenario is 194 GWhel and accounts for about 20% of the available flexible heat pump electricity demand. A comparison of different modelling approaches and a deterministic sensitivity analysis of key input parameters complement the modelling. The most important input parameters impacting heat pump flexibility are the flexible capacity (determined by installed capacity and share of control), shifting time limitations, and cost assumptions for the flexibility provided. Heat pump flexibility contributes more to increasing low residual loads (up to 22% in the assessed scenarios) than decreasing residual load peaks. Wind power integration benefits more from heat pump flexibility than photovoltaics because of the temporal correlation between heat demand and wind generation.

Funder

Klima- und Energiefonds

Technische Universität Wien Bibliothek

TU Wien

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3