Optimization of energy consumption in vertical mobility systems of high-rise office buildings: A case study from a developing economy

Author:

Thebuwena A. C. H. J.ORCID,Samarakoon S. M. Samindi M. K.ORCID,Ratnayake R. M. ChandimaORCID

Abstract

AbstractElevator systems serve as the primary mode of transportation in tall buildings which consumes approximately 5–15% of a building's total energy demand. This research explores the potential for energy savings in elevator systems while maintaining passenger comfort through the implementation of green approaches. The research concentrates on a contemporary high-rise office building situated in the central business district of a developing economy. It employs a case study methodology involving traffic simulation to determine optimal elevator specifications for industry-standard service levels. By conducting the simulation, the researchers identified the optimal number of elevators, elevator capacity, speed, and the most suitable elevator management system. Following that, a range of green measures were implemented, including the incorporation of a regenerative system, to effectively reduce the electrical energy consumption of the elevator system. Subsequently, a passenger traffic simulation model was integrated with an energy calculation model to jointly simulate and calculate the elevator system's overall energy consumption and regeneration. The elevator energy requirements were optimized, while maintaining user-friendliness and requirements related to guidelines given in the standards. The results showed that 36% of the energy consumption was reduced by incorporating an energy regenerative option into the elevator system in addition to selecting efficient mechanical components and implementing an efficient elevator traffic management system. This research contributes to the limited body of literature on energy optimization in elevators and emphasizes the importance of balancing energy efficiency with service quality. These findings provide guidance for establishing benchmarks in reducing energy consumption, in relation to elevator systems.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3