Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Science Applications,General Social Sciences
Reference33 articles.
1. Alonso, O., Carson, C., Gerster, D., Ji, X., & Nabar, U. S. (2010). Detecting uninteresting content in text streams. In Proceedings of the SIGIR 2010 workshop on crowdsourcing for search evaluation (CSE 2010) (pp. 39–42).
2. Anger, I., & Kittl, C. (2011). Measuring influence on Twitter. In Proceedings of the 11th international conference on knowledge management and knowledge technologies, 31(1), pp. 1–31.
3. Bates, M. (2017). Tracking disease: Digital epidemiology offers new promise in predicting outbreaks. IEEE Pulse.
https://doi.org/10.1109/mpul.2016.2627238
.
4. Beauchamp, N. (2017). Predicting and interpolating state-level polls using Twitter textual data. American Journal of Political Science,
61, 490–503.
https://doi.org/10.1111/ajps.12274
.
5. Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics,
8(4), 895–903.
https://doi.org/10.1016/j.joi.2014.09.005
.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献