Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Science Applications,General Social Sciences
Reference63 articles.
1. Ai, Q., Yang, L., Guo, J., & Croft, W. B. (2016a). Analysis of the paragraph vector model for information retrieval. In Proceedings of the 2016 ACM on international conference on the theory of information retrieval, ACM (pp. 133–142).
2. Ai, Q., Yang, L., Guo, J., & Croft, W. B. (2016b). Improving language estimation with the paragraph vector model for ad-hoc retrieval. In Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 869–872).
3. Bai, X., Zhang, F., & Lee, I. (2019). Predicting the citations of scholarly paper. Journal of Informetrics, 13(1), 407–418.
https://doi.org/10.1016/j.joi.2019.01.010
.
4. Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. ACL, 1, 238–247.
5. Bird, S. (2006). NLTK: The natural language toolkit. In Proceedings of the COLING/ACL on interactive presentation sessions, association for computational linguistics (pp. 69–72).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献