Automatic related work section generation: experiments in scientific document abstracting

Author:

AbuRa’ed AhmedORCID,Saggion Horacio,Shvets Alexander,Bravo Àlex

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference82 articles.

1. AbuRa’ed, A., Bravo, A., Chiruzzo, L., & Saggion, H. (2018). Lastus/taln+ inco@ cl-scisumm 2018-using regression and convolutions for cross-document semantic linking and summarization of scholarly literature. In Proceedings of the 3nd joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL2018). Ann Arbor, Michigan (July 2018).

2. AbuRa’ed, A., Chiruzzo, L., Saggion, H., Accuosto, P., & Bravo Serrano, À. (2017). Lastus/taln@ clscisumm-17: Cross-document sentence matching and scientific text summarization systems. In Proceedings of the 2nd joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL2017). Tokyo, Japan (August 2017).

3. AbuRa’ed, A., Saggion, H., & Chiruzzo, L. (2020). A multi-level annotated corpus of scientific papers for scientific document summarization and cross-document relation discovery. In Proceedings of the 12th international conference on language resources and evaluation (LREC 2020).

4. Agarwal, N., Gvr, K., Reddy, R, S., & Rosé, C. P. (2011). Towards multi-document summarization of scientific articles: Making interesting comparisons with scisumm. In Proceedings of the workshop on automatic summarization for different genres, media, and languages (pp. 8–15). Association for Computational Linguistics.

5. Altmami, N. I., & Menai, M. E. B. (2018). Semantic graph based automatic summarization of multiple related work sections of scientific articles. In International conference on artificial intelligence: Methodology, systems, and applications (pp. 255–259). Springer.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequential sentence classification in research papers using cross-domain multi-task learning;International Journal on Digital Libraries;2024-01-22

2. Design of a Teaching Resource Development System Based on the FileForge Module;Lecture Notes in Educational Technology;2024

3. Generating a related work section for scientific papers: an optimized approach with adopting problem and method information;Scientometrics;2022-07-21

4. Automatic Related Work Section in Scientific Article: Research Trends and Future Directions;2022 International Seminar on Intelligent Technology and Its Applications (ISITIA);2022-07-20

5. Cross-domain multi-task learning for sequential sentence classification in research papers;Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries;2022-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3