1. AbuRa’ed, A., Bravo, A., Chiruzzo, L., & Saggion, H. (2018). Lastus/taln+ inco@ cl-scisumm 2018-using regression and convolutions for cross-document semantic linking and summarization of scholarly literature. In Proceedings of the 3nd joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL2018). Ann Arbor, Michigan (July 2018).
2. AbuRa’ed, A., Chiruzzo, L., Saggion, H., Accuosto, P., & Bravo Serrano, À. (2017). Lastus/taln@ clscisumm-17: Cross-document sentence matching and scientific text summarization systems. In Proceedings of the 2nd joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL2017). Tokyo, Japan (August 2017).
3. AbuRa’ed, A., Saggion, H., & Chiruzzo, L. (2020). A multi-level annotated corpus of scientific papers for scientific document summarization and cross-document relation discovery. In Proceedings of the 12th international conference on language resources and evaluation (LREC 2020).
4. Agarwal, N., Gvr, K., Reddy, R, S., & Rosé, C. P. (2011). Towards multi-document summarization of scientific articles: Making interesting comparisons with scisumm. In Proceedings of the workshop on automatic summarization for different genres, media, and languages (pp. 8–15). Association for Computational Linguistics.
5. Altmami, N. I., & Menai, M. E. B. (2018). Semantic graph based automatic summarization of multiple related work sections of scientific articles. In International conference on artificial intelligence: Methodology, systems, and applications (pp. 255–259). Springer.