Cited text span identification for scientific summarisation using pre-trained encoders

Author:

Zerva ChrysoulaORCID,Nghiem Minh-Quoc,Nguyen Nhung T. H.,Ananiadou Sophia

Abstract

AbstractWe present our approach for the identification of cited text spans in scientific literature, using pre-trained encoders (BERT) in combination with different neural networks. We further experiment to assess the impact of using these cited text spans as input in BERT-based extractive summarisation methods. Inspired and motivated by the CL-SciSumm shared tasks, we explore different methods to adapt pre-trained models which are tuned for generic domain to scientific literature. For the identification of cited text spans, we assess the impact of different configurations in terms of learning from augmented data and using different features and network architectures (BERT, XLNET, CNN, and BiMPM) for training. We show that identifying and fine-tuning the language models on unlabelled or augmented domain specific data can improve the performance of cited text span identification models. For the scientific summarisation we implement an extractive summarisation model adapted from BERT. With respect to the input sentences taken from the cited paper, we explore two different scenarios: (1) consider all the sentences (full-text) of the referenced article as input and (2) consider only the text spans that have been identified to be cited by other publications. We observe that in certain experiments, by using only the cited text-spans we can achieve better performance, while minimising the input size needed.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference86 articles.

1. Abu-Jbara, A., & Radev, D. (2011). Coherent citation-based summarization of scientific papers. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1 (pp. 500–509). Association for Computational Linguistics.

2. Abura’ed, A., Bravo, A., Chiruzzo, L., & Saggion, H. (2018). Lastus/taln+ inco@ cl-scisumm 2018-using regression and convolutions for cross-document semantic linking and summarization of scholarly literature. In Proceedings of the 3rd joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL2018). Ann Arbor, Michigan (July 2018).

3. Aggarwal, P., & Sharma, R. (2016). Lexical and syntactic cues to identify reference scope of citance. In Proceedings of the joint workshop on bibliometric-enhanced information retrieval and natural language processing for digital libraries (BIRNDL) (pp. 103–112).

4. Agrawal, K., & Mittal, A. (2018) Iiit-h@ clscisumm-18. In BIRNDL@ SIGIR (pp. 130–133).

5. Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D., Dunkelberger, J., Elgohary, A., Feldman, S., & Ha, V., et al. (2018). Construction of the literature graph in semantic scholar. arXiv:1805.02262.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SATS: simplification aware text summarization of scientific documents;Frontiers in Artificial Intelligence;2024-07-10

2. A binary grey wolf optimizer to solve the scientific document summarization problem;Multimedia Tools and Applications;2023-08-17

3. Cross-lingual extreme summarization of scholarly documents;International Journal on Digital Libraries;2023-08-10

4. CitationSum: Citation-aware Graph Contrastive Learning for Scientific Paper Summarization;Proceedings of the ACM Web Conference 2023;2023-04-30

5. Deep Learning Model for COVID-19 Sentiment Analysis on Twitter;New Generation Computing;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3