The aging effect in evolving scientific citation networks

Author:

Hu Feng,Ma Lin,Zhan Xiu-Xiu,Zhou Yinzuo,Liu Chuang,Zhao Haixing,Zhang Zi-KeORCID

Abstract

AbstractThe study of citation networks is of interest to the scientific community. However, the underlying mechanism driving individual citation behavior remains imperfectly understood, despite the recent proliferation of quantitative research methods. Traditional network models normally use graph theory to consider articles as nodes and citations as pairwise relationships between them. In this paper, we propose an alternative evolutionary model based on hypergraph theory in which one hyperedge can have an arbitrary number of nodes, combined with an aging effect to reflect the temporal dynamics of scientific citation behavior. Both theoretical approximate solution and simulation analysis of the model are developed and validated using two benchmark datasets from different disciplines, i.e. publications of the American Physical Society (APS) and the Digital Bibliography & Library Project (DBLP). Further analysis indicates that the attraction of early publications will decay exponentially. Moreover, the experimental results show that the aging effect indeed has a significant influence on the description of collective citation patterns. Shedding light on the complex dynamics driving these mechanisms facilitates the understanding of the laws governing scientific evolution and the quantitative evaluation of scientific outputs.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hyper-distance-based method for hypernetwork comparison;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-08-01

2. Message-passing approach to higher-order percolation;Physica A: Statistical Mechanics and its Applications;2024-01

3. A generative hypergraph model for double heterogeneity;Journal of Complex Networks;2023-12-22

4. Obsolescence effects in second language phonological networks;Memory & Cognition;2023-12-04

5. Counting spanning hypertrees in non-uniform hypergraphs based on sum operation;International Journal of Modern Physics C;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3