Algorithmic identification of Ph.D. thesis-related publications: a proof-of-concept study

Author:

Donner PaulORCID

Abstract

AbstractIn this study we propose and evaluate a method to automatically identify the journal publications that are related to a Ph.D. thesis using bibliographical data of both items. We build a manually curated ground truth dataset from German cumulative doctoral theses that explicitly list the included publications, which we match with records in the Scopus database. We then test supervised classification methods on the task of identifying the correct associated publications among high numbers of potential candidates using features of the thesis and publication records. The results indicate that this approach results in good match quality in general and with the best results attained by the “random forest” classification algorithm.

Funder

Bundesministerium für Bildung und Forschung

Deutsches Zentrum für Hochschul- und Wissenschaftsforschung GmbH (DZHW)

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference16 articles.

1. Breimer, L. (1996). Authorship on and usage of published papers in current Swedish biomedical theses. Scientometrics, 36(2), 255–258. https://doi.org/10.1007/bf02017318

2. Breimer, L. H., & Mikhailidis, D. P. (1993). Towards a doctoral thesis through published works. Biomedicine & Pharmacotherapy, 47(9), 403–407. https://doi.org/10.1016/0753-3322(93)90106-U

3. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785

4. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., … Li, Y. (2021). Xgboost: Extreme gradient boosting. R package version 1.3.2.1.

5. Consortium for the National Report on Junior Scholars. (2017). 2017 National Report on Junior Scholars. Statistical Data and Research Findings on Doctoral Students and Doctorate Holders in Germany. Overview of Key Results. Retrieved from https://www.buwin.de/dateien/buwin-2017-keyresults.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3