1. Alperin, J. P., Gomez, C. J., & Haustein, S. (2018). Identifying diffusion patterns of research articles on Twitter: A case study of online engagement with open access articles. Public Understanding of Science, 28(1), 2–18. https://doi.org/10.1177/0963662518761733
2. Arroyo-Machado, W., Torres-Salinas, D., Herrera-Viedma, E., & Romero-Frías, E. (2020). Science through Wikipedia: A novel representation of open knowledge through co-citation networks. PLoS ONE, 15(2), e0228713. https://doi.org/10.1371/journal.pone.0228713
3. Arroyo-Machado, W., Torres-Salinas, D., & Robinson-Garcia, N. (2019). Identifying communities of interest in social media: Microbiology as a case study. In G. Catalano, C. Daraio, M. Gregori, H. F. Moed, & G. Ruocco (Eds.), Proceedings of the 17th International Conference on Scientometrics and Informetrics, ISSI 2019 (pp. 1201–1209). http://issi-society.org/proceedings/issi_2019/ISSI%202019%20-%20Proceedings%20VOLUME%20I.pdf
4. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Third International AAAI Conference on Weblogs and Social Media. Third International AAAI Conference on Weblogs and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
5. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008