Using ontologies to map between research data and policymakers’ presumptions: the experience of the KNOWMAK project

Author:

Maynard DianaORCID,Lepori Benedetto,Petrak Johann,Song Xingyi,Laredo Philippe

Abstract

AbstractUnderstanding knowledge co-creation in key emerging areas of European research is critical for policy makers wishing to analyze impact and make strategic decisions. However, purely data-driven methods for characterising policy topics have limitations relating to the broad nature of such topics and the differences in language and topic structure between the political language and scientific and technological outputs. In this paper, we discuss the use of ontologies and semantic technologies as a means to bridge the linguistic and conceptual gap between policy questions and data sources for characterising European knowledge production. Our experience suggests that the integration between advanced techniques for language processing and expert assessment at critical junctures in the process is key for the success of this endeavour.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference42 articles.

1. Amjadian, E., Inkpen, D., Paribakht, T. S., & Faez, F. (2016). Local-global vectors to improve unigram terminology extraction. In 5th international workshop on computational terminology (Computerm 2016) (pp. 2–11). Osaka, Japan.

2. Barré, R. (2001). Sense and nonsense of S&T productivity indicators. Science and Public Policy, 28(4), 259–266.

3. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.

4. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.

5. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3