Performance model’s development: a novel approach encompassing ontology-based data access and visual analytics

Author:

Angelini MarcoORCID,Daraio Cinzia,Lenzerini Maurizio,Leotta Francesco,Santucci Giuseppe

Abstract

AbstractThe quantitative evaluation of research is currently carried out by means of indicators calculated on data extracted and integrated by analysts who elaborate them by creating illustrative tables and plots of results. In this approach, the robustness of the metrics used and the possibility for users of the metrics to intervene in the evaluation process are completely neglected. We propose a new approach which is able to move forward, from indicators’ development to an interactive performance model’s development. It combines the advantages of the ontology-based data access paradigm with the flexibility and robustness of a visual analytics environment putting the consumer/stakeholder at the centre of the evaluation. A detailed description of such an approach is presented in the paper. The approach is illustrated and evaluated trough a comprehensive user’s study that proves the added capabilities and the benefits that a user of performance models can have by using this approach.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Clarivate Analytics

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference46 articles.

1. Angelini, M., Blasilli, G., Catarci, T., Lenti, S., & Santucci, G. (2019a). Vulnus: Visual vulnerability analysis for network security. IEEE Transactions on Visualization and Computer Graphics, 25(1), 183–192. https://doi.org/10.1109/TVCG.2018.2865028.

2. Angelini, M., Daraio, C., Lenzerini, M., Leotta, F., & Santucci, G. (2019b). Performance model’s development: A novel approach encompassing ontology-based data access and visual analytics. In 2019 17th International conference on scientometrics and infometrics, ISSI 2019—Proceedings (Vol. 2, pp. 1912–1923).

3. Angelini, M., Fazzini, V., Ferro, N., Santucci, G., & Silvello, G. (2018). CLAIRE: A combinatorial visual analytics system for information retrieval evaluation. Information Processing & Management, 54(6), 1077–1100.

4. Angelini, M., & Santucci, G. (2017). Cyber situational awareness: from geographical alerts to high-level management. Journal of Visualization, 20(3), 453–459.

5. Antonioli, N., Castanò, F., Civili, C., Coletta, S., Grossi, S., Lembo, D., et al. (2013). Ontology-based data access: The Experience at the Italian Department of Treasury. In Conference on advanced information systems engineering, CAiSE 2013-Co-located with 25th international conference on advanced information systems engineering, CAiSE 2013 (Vol. 1017, pp. 9–16).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3