Abstract
AbstractIn China, Prof. Hongzhou Zhao and Zeyuan Liu are the pioneers of the concept “knowledge unit” and “knowmetrics” for measuring knowledge. However, the definition on “computable knowledge object” remains controversial so far in different fields. For example, it is defined as (1) quantitative scientific concept in natural science and engineering, (2) knowledge point in the field of education research, and (3) semantic predications, i.e., Subject-Predicate-Object (SPO) triples in biomedical fields. The Semantic MEDLINE Database (SemMedDB), a high-quality public repository of SPO triples extracted from medical literature, provides a basic data infrastructure for measuring medical knowledge. In general, the study of extracting SPO triples as computable knowledge unit from unstructured scientific text has been overwhelmingly focusing on scientific knowledge per se. Since the SPO triples would be possibly extracted from hypothetical, speculative statements or even conflicting and contradictory assertions, the knowledge status (i.e., the uncertainty), which serves as an integral and critical part of scientific knowledge has been largely overlooked. This article aims to put forward a framework for Medical Knowmetrics using the SPO triples as the knowledge unit and the uncertainty as the knowledge context. The lung cancer publications dataset is used to validate the proposed framework. The uncertainty of medical knowledge and how its status evolves over time indirectly reflect the strength of competing knowledge claims, and the probability of certainty for a given SPO triple. We try to discuss the new insights using the uncertainty-centric approaches to detect research fronts, and identify knowledge claims with high certainty level, in order to improve the efficacy of knowledge-driven decision support.
Funder
National Natural Science Foundation of China
Young Elite Scientists Sponsorship Program by China Association for Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Science Applications,General Social Sciences
Reference54 articles.
1. ALAMRI, A. 2016. The detection of contradictory claims in biomedical abstracts. University of Sheffield.
2. ATANASSOVA, I., REY, F., CLAUDE & BERTIN, M. 2018. Studying Uncertainty in Science: a distributional analysis through the IMRaD structure. WOSP - 7th International Workshop on Mining Scientific Publications at 11th edition of the Language Resources and Evaluation Conference. Miyazaki, Japan.
3. Bakal, G., Talari, P., Kakani, E. V., & Kavuluru, R. (2018). Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. Journal of Biomedical Informatics, 82, 189–199.
4. Borner, K., Chen, C. M., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.
5. CAVALLER, V. 2008. Datametrics? About the architecture of the metric disciplines. Fourth International Conference on Webometrics, Informetrics and Scientometrics & Ninth COLLNET Meeting.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献