1. Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2014/597368.
2. Allison, R. S., Johnston, J. M., Craig, G., & Jennings, S. (2016). Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors (Switzerland). https://doi.org/10.3390/s16081310.
3. Almeida, R., Soares-filho, B. S., Nepstad, D., Applications, S. E., July, N., Silvestrini, R. A., & et al. (2016). Simulating fire regimes in the Amazon in response to climate change and deforestation Michael Coe, Hermann Rodrigues and Renato Assunção Published by : Wiley Stable URL : http://www.jstor.org/stable/23023102 Accessed : 09-08-2016 21 : 17 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Simulating fire regimes in the Amazon in response to climate change and deforestation, 21(5), 1573–1590.
4. Ambrosia, V. G., & Brass, J. A. (1988). Thermal analysis of wildfires and effects on global ecosystem cycling. Geocarto International, 3(1), 29–39. https://doi.org/10.1080/10106048809354131.
5. Arroyo, L. A., Pascual, C., & Manzanera, J. A. (2008). Fire models and methods to map fuel types: The role of remote sensing. Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2008.06.048.