Innovation signals: leveraging machine learning to separate noise from news

Author:

Mühlroth ChristianORCID,Kölbl Laura,Grottke MichaelORCID

Abstract

AbstractThe early detection of and an adequate response to meaningful signals of change have a defining impact on the competitive vitality and the competitive advantage of companies. For this strategically important task, companies apply corporate foresight, aiming to enable superior company performance. With the growing dynamics of global markets, the amount of data to be analyzed for this purpose is constantly increasing. As a result, these analyses are often performed with an unreasonably high investment of financial and human resources, or are even not performed at all. To address this challenge, this paper presents a machine-learning-based approach to help companies identify early signals of change with a higher level of automation than before. For this, we combine a newly-proposed quantitative approach with the existing qualitative approaches by Cooper (stage-gate model) and by Rohrbeck (corporate foresight process). After a search field of interest has been defined, the related data is collected from web news sites, early signals are identified and selected automatically, and domain experts then assess these signals with respect to their relevance and novelty. Once it has been set up, the approach can be executed iteratively at regular time intervals in order to continuously scan for new signals of change. By means of three case studies supported by domain experts we demonstrate the effectiveness of our approach. After presenting our findings and discussing possible limitations of the approach, we suggest future research opportunities to further advance this field.

Funder

Bundesministerium für Bildung und Forschung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault detection method of new energy vehicle engine based on wavelet transform and support vector machine;International Journal of Knowledge-based and Intelligent Engineering Systems;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3