A Deep Multi-Tasking Approach Leveraging on Cited-Citing Paper Relationship For Citation Intent Classification

Author:

Ghosal TirthankarORCID,Varanasi Kamal Kaushik,Kordoni Valia

Abstract

AbstractCitations are crucial artifacts to provide additional information to the reader to comprehend the research under concern. There are different roles that citations play in scientific discourse. Correctly identifying the intent of the citations finds applications ranging from predicting scholarly impact, finding idea propagation, to text summarization. With the rapid growth in scientific literature, the need for automated methods to classify citations is now growing intense. However, we can only fully understand the intent of a citation if we look at the citation context in the citing paper and also the primary purpose of the cited article. In this work, we propose a neural multi-task learning framework that harnesses the structural information of the research papers and the cited paper’s information for the effective classification of citation intents. We analyze the impact of three auxiliary tasks on the performance of our approach for citation classification. Our experiments on three benchmark citation classification datasets show that incorporating cited paper information (title) shows that our deep neural model achieves a new state-of-the-art on the ACL-ARC dataset with an absolute increase of 5.3% in the F1 score over the previous best model. We also achieve comparable performance with respect to the best-performing systems in the SDP 2021 3C Shared task on Citation Context Classification. We make our codes available at https://github.com/Tirthankar-Ghosal/citationclassification-SCIM

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference28 articles.

1. Beltagy, I., Cohan, A., Feigenblat, G., Freitag, D., Ghosal, T., Hall, K., Herrmannova, D., Knoth, P., Lo, K., Mayr, P., Patton, R., Shmueli-Scheuer, M., de Waard, A., Wang, K., & Wang, L. (2021). Overview of the second workshop on scholarly document processing. In Proceedings of the Second Workshop on Scholarly Document Processing, (pp. 159–165). Association for Computational Linguistics. Retrieved from https://aclanthology.org/2021.sdp-1.22

2. Beltagy, I., Lo, K., & Cohan, A. (2019). Scibert: A pretrained language model for scientific text. In Inui, K., Jiang, J., Ng, V., Wan, X. (Eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, (pp. 3613–3618). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1371

3. Caruana, R. (1997). Multitask learning. Machine learning, 28(1), 41–75.

4. Chaker, J., Herrera-Viedma, E., & Cobo, M. (2021). The use of citation context to detect the evolution of research topics: A large-scale analysis. Scientometrics. https://doi.org/10.1007/s11192-020-03858-y.

5. Chandrasekaran, M. K., Feigenblat, G., Freitag, D., Ghosal, T., Hovy, E. H., Mayr, P., Shmueli-Scheuer, M., & de Waard, A. (2020). Overview of the first workshop on scholarly document processing (SDP). In Chandrasekaran, M. K., de Waard, A., Feigenblat, G., Freitag, D., Ghosal, T., Hovy, E. H., Knoth, P., Konopnicki, D., Mayr, P., Patton, R. M., Shmueli-Scheuer, M. (Eds.) Proceedings of the First Workshop on Scholarly Document Processing, SDP@EMNLP 2020, Online, November 19, 2020, (pp. 1–6). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.sdp-1.1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3