Abstract
AbstractEpilepsy is a common, chronic neurological disorder that has been associated with impaired neurodevelopment and immunity. The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism. Here, we first determined the expression pattern and distribution of the CXCR5 gene in the mouse brain during different stages of development and the brain tissue of patients with epilepsy. Subsequently, we found that the knockdown of CXCR5 increased the susceptibility of mice to pentylenetetrazol- and kainic acid-induced seizures, whereas CXCR5 overexpression had the opposite effect. CXCR5 knockdown in mouse embryos via viral vector electrotransfer negatively influenced the motility and multipolar-to-bipolar transition of migratory neurons. Using a human-derived induced an in vitro multipotential stem cell neurodevelopmental model, we determined that CXCR5 regulates neuronal migration and polarization by stabilizing the actin cytoskeleton during various stages of neurodevelopment. Electrophysiological experiments demonstrated that the knockdown of CXCR5 induced neuronal hyperexcitability, resulting in an increased number of seizures. Finally, our results suggested that CXCR5 deficiency triggers seizure-related electrical activity through a previously unknown mechanism, namely, the disruption of neuronal polarity.
Publisher
Springer Science and Business Media LLC
Subject
General Medicine,Physiology,General Neuroscience
Reference33 articles.
1. Dvir N, Javaid MS, Jones NC, Powell KL, Kwan P, O’Brien TJ. The effects of cell therapy on seizures in animal models of epilepsy: protocol for systematic review and meta-analysis of preclinical studies. Syst Rev 2019, 8: 255.
2. Helbig KL, Goldberg EM. SCN3A-related neurodevelopmental disorder. 2021 Jun 3 [updated 2021 Nov 4]. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.
3. Baldassari S, Ribierre T, Marsan E, Adle-Biassette H, Ferrand-Sorbets S, Bulteau C, et al. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol 2019, 138: 885–900.
4. Buompadre MC. Malformations of cortical development and epilepsy. Medicina (B Aires) 2019, 79: 37–41.
5. Ip JP, Shi L, Chen Y, Itoh Y, Fu WY, Betz A, et al. α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2. Nat Neurosci 2011, 15: 39–47.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献