Tarsal attachment structures of the biting midge Forcipomyia paludis (Diptera: Ceratopogonidae), a specialized ectoparasite of Odonata imagines

Author:

Gorb Stanislav N.,Wildermuth Hansruedi,Kohl Stefan,Büsse Sebastian

Abstract

AbstractThe female of the biting midge Forcipomyia paludis is a dipteran ectoparasite of West Palaearctic damselflies and dragonflies, sucking haemolymph mainly from wing veins of their hosts. This tiny midge remains firmly attached to the wings even during fast flight and aerial fight maneuvers as shown in the present paper by field studies of the large dragonfly, Cordulegaster boltonii. Since individuals of F. paludis firmly attach themselves to the challenging wing surface of their host and can successfully withstand drag and vibrations during flight, we assume that this midge species has specific microstructural adaptations on its legs for attaching to the wing surface. In our morphological study, we used scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), to study the structure of F. paludis tarsi, as well as the micro morphology of the wing surfaces of their host. Additionally, for the first time, we were able to show attachment devices of the midges dried out in contact with the host’s surface. The spatulae of the plantar setae and especially the empodial setae, are capable of replicating nanoscale wax crystals of the super hydrophobic wing coverage of the dragonfly wing membrane, in order to increase an effective contact area and therefore adhesion. This ability requires extremely soft materials of the spatula, which seems to be rather unique even in comparison to the leg attachment devices of other dipterans and other insect taxa in general.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Animal Science and Zoology

Reference75 articles.

1. Appel E, Gorb SN (2014) Comparative functional morphology of vein joints in Odonata. Schweizerbart Science Publishers, Zoologica Stuttgart, pp 1–104

2. Bauchhenss E (1979) Die Pulvillen von Calliphora erythrocephala Meig. (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphology 93:99–123

3. Bauchhenss E, Renner M (1977) Pulvillus of Calliphora erythrocephala Meig. (Diptera; Calliphoridae). Int J Insect Morphol Embryol 6:225–227

4. Borkent A, Dominiak P (2020) Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 4787(1):1–377

5. Boudot J-P, Havelka P, Martens A (2019) The biting midge Forcipomyia paludis as a parasite of Odonata in North Africa (Diptera: Ceratopogonidae). Notul Odonatol 9(4):164–168

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3