Revisiting trends in morphology of antennal sensilla in scarabaeoid beetles

Author:

Pacheco Thaynara L.,Bohacz Claudia,Ballerio Alberto,Schoolmeesters Paul,Ahrens Dirk

Abstract

AbstractPhytophagous scarab beetles associated with angiosperms have characteristically enlarged lamellate antennae and exhibit a striking morphological variation of sensilla. In this study, we compared the morphology of antennal surface of 62 species Scarabaeoidea using SEM microscopy, particularly also in light of their evolution in association with angiosperms. We investigated the correlation of antennal sensilla morphology, i.e., their structure and distribution, with species diversity and lineage diversification rates. A high diversity of sensilla was observed but also multiple transitional forms, even on the same antennomere. We interpreted this as evidence for a high evolutionary plasticity. We recognized clear patterns of convergence and repeated evolution of certain types of placoid sensilla. One main tendency found in the phytophagous Pleurostict chafers was a shift from sensilla trichodea to placoid-like sensilla, apparently also enhanced by the increase of the lamellate antennal surface, either by size or number of the lamellae. This trend occurred not only in the Pleurosticts, but also in Glaphyridae, a second angiosperm-associated lineage of Scarabaeoidea. However, our results suggest no direct relation between species diversity or the rate of diversification and general sensilla morphology, i.e., the origin of placoid sensilla. This could be explained not only by species-poor lineages also possessing placoid sensilla but also by otherwise successful and species rich groups having sensilla trichodea (e.g., dung beetles). Results further reveal the need to refine current phylogenetic hypotheses by more comprehensive taxon sampling and to expand the molecular characterization of pheromones and odor binding proteins to better understand the role of chemical communication in scarab diversification.

Funder

Deutsche Forschungsgemeinschaft

Stiftung Leibniz-Institut zur Analyse des Biodiversitätswandels (LIB)

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3