Publisher
Springer Science and Business Media LLC
Reference145 articles.
1. Abdollahizad S, Balafar MA, Feizizadeh B, Babazadeh Sangar A, Samadzamini K (2021) Using hybrid artificial intelligence approach based on a neuro-fuzzy system and evolutionary algorithms for modeling landslide susceptibility in East Azerbaijan Province. Iran Earth Sci Inform 14:1861–1882. https://doi.org/10.1007/s12145-021-00644-z
2. Abija FA, Nwosu JI, Ifedotun AI, Osadebe CC (2020) Landslide susceptibility assessment of Calabar, Nigeria using geotechnical, remote sensing and multi-criteria decision analysis: implications for urban planning and development. SDRP J Earth Sci Environ Stud 4(6):774–788
3. Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing the accuracy of landslide susceptibility maps? Geosci Front 11(3):871–883
4. Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine. Algeria Arab J Geosci 10:194
5. Aditian A, Kubota T, Shinohara Y (2018) Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318:101–111