Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder

Author:

Maleika WojciechORCID

Abstract

AbstractThis paper presents the optimization of the inverse distance weighting method (IDW) in the process of creating a digital terrain model (DTM) of the seabed based on bathymetric data collected using a multibeam echosounder (MBES). There are many different methods for processing irregular measurement data into a grid-based DTM, and the most popular of these methods are inverse distance weighting (IDW), nearest neighbour (NN), moving average (MA) and kriging (K). Kriging is often considered one of the best methods in interpolation of heterogeneous spatial data, but its use is burdened by a significantly long calculation time. In contrast, the MA method is the fastest, but the calculated models are less accurate. Between them is the IDW method, which gives satisfactory accuracy with a reasonable calculation time. In this study, the author optimized the IDW method used in the process of creating a DTM seabed based on measurement points from MBES. The goal of this optimization was to significantly accelerate the calculations, with a possible additional increase in the accuracy of the created model. Several variants of IDW methods were analysed (dependent on the search radius, number of points in the interpolation, power of the interpolation and applied smoothing method). Finally, the author proposed an optimization of the IDW method, which uses a new technique of choosing the nearest points during the interpolation process (named the growing radius). The experiments presented in the paper and the results obtained show the true potential of the IDW optimized method in the case of DTM estimation.

Funder

West Pomeranian University of Technology, Szczecin

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Environmental Science (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3