Automatic non-destructive UAV-based structural health monitoring of steel container cranes

Author:

De Arriba López VanessaORCID,Maboudi Mehdi,Achanccaray Pedro,Gerke Markus

Abstract

AbstractContainer cranes are of key importance for maritime cargo transportation. The uninterrupted and all-day operation of these container cranes, which directly affects the efficiency of the port, necessitates the continuous inspection of these massive hoisting steel structures. Due to the large size of cranes, the current manual inspections performed by expert climbers are costly, risky, and time-consuming. This motivates further investigations on automated non-destructive approaches for the remote inspection of fatigue-prone parts of cranes. In this paper, we investigate the effectiveness of color space-based and deep learning-based approaches for separating the foreground crane parts from the whole image. Subsequently, three different ML-based algorithms (k-Nearest Neighbors, Random Forest, and Naive Bayes) are employed to detect the rust and repainting areas from detected foreground parts of the crane body. Qualitative and quantitative comparisons of the results of these approaches were conducted. While quantitative evaluation of pixel-based analysis reveals the superiority of the k-Nearest Neighbors algorithm in our experiments, the potential of Random Forest and Naive Bayes for region-based analysis of the defect is highlighted.

Funder

Bundesministerium für Verkehr und Digitale Infrastruktur

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Environmental Science (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3