Flexible, non-parametric modeling using regularized neural networks

Author:

Allerbo OskarORCID,Jörnsten Rebecka

Abstract

AbstractNon-parametric, additive models are able to capture complex data dependencies in a flexible, yet interpretable way. However, choosing the format of the additive components often requires non-trivial data exploration. Here, as an alternative, we propose PrAda-net, a one-hidden-layer neural network, trained with proximal gradient descent and adaptive lasso. PrAda-net automatically adjusts the size and architecture of the neural network to reflect the complexity and structure of the data. The compact network obtained by PrAda-net can be translated to additive model components, making it suitable for non-parametric statistical modelling with automatic model selection. We demonstrate PrAda-net on simulated data, where we compare the test error performance, variable importance and variable subset identification properties of PrAda-net to other lasso-based regularization approaches for neural networks. We also apply PrAda-net to the massive U.K. black smoke data set, to demonstrate how PrAda-net can be used to model complex and heterogeneous data with spatial and temporal components. In contrast to classical, statistical non-parametric approaches, PrAda-net requires no preliminary modeling to select the functional forms of the additive components, yet still results in an interpretable model representation.

Funder

Vetenskapsrådet

Stiftelsen för Strategisk Forskning

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Reference23 articles.

1. Ainsworth SK, Foti NJ, Lee AK, Fox EB (2018) oi-vae: output interpretable vaes for nonlinear group factor analysis. In: international conference on machine learning, pp. 119–128

2. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314

3. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1

4. Friedman JH, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76(376):817–823

5. Hastie TJ, Tibshirani RJ (1990) Generalized additive models, vol 43. CRC Press, London

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3