Abstract
AbstractBalanced sampling is a random method for sample selection, the use of which is preferable when auxiliary information is available for all units of a population. However, implementing balanced sampling can be a challenging task, and this is due in part to the computational efforts required and the necessity to respect balancing constraints and inclusion probabilities. In the present paper, a new algorithm for selecting balanced samples is proposed. This method is inspired by simulated annealing algorithms, as a balanced sample selection can be interpreted as an optimization problem. A set of simulation experiments and an example using real data shows the efficiency and the accuracy of the proposed algorithm.
Funder
Università degli Studi di Trento
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献