A model-based ultrametric composite indicator for studying waste management in Italian municipalities

Author:

Cavicchia CarloORCID,Sarnacchiaro PasqualeORCID,Vichi MaurizioORCID,Zaccaria GiorgiaORCID

Abstract

AbstractA Composite Indicator (CI) is a useful tool to synthesize information on a multidimensional phenomenon and make policy decisions. Multidimensional phenomena are often modeled by hierarchical latent structures that reconstruct relationships between variables. In this paper, we propose an exploratory, simultaneous model for building a hierarchical CI system to synthesize a multidimensional phenomenon and analyze its several facets. The proposal, called the Ultrametric Composite Indicator (UCI) model, reconstructs the hierarchical relationships among manifest variables detected by the correlation matrix via an extended ultrametric correlation matrix. The latter has the feature of being one-to-one associated with a hierarchy of latent concepts. Furthermore, the proposal introduces a test to unravel relevant dimensions in the hierarchy and retain statistically significant higher-level CIs. A simulation study is illustrated to compare the proposal with other existing methodologies. Finally, the UCI model is applied to study Italian municipalities’ behavior toward waste management and to provide a tool to guide their councils in policy decisions.

Funder

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Reference33 articles.

1. Anderson TW, Rubin H (1956) Statistical inferences in factor analysis. Proceedings of the Third Symposium on Mathematical Statistics and Probability 5:111–150

2. Cailliez F (1983) The analytical solution of the additive constant problem. Psychometrika 48(2):305–308

3. Cattell RB (1978) Higher-order factors: models andormulas. Springer, US, Boston, MA, pp 192–228

4. Cavicchia C, Vichi M (2021) Statistical model-based composite indicators for tracking coherent policy conclusions. Soc Indic Res 156(2):449–479

5. Cavicchia C, Vichi M (2022) Second-order disjoint factor analysis. Psychometrika 87(1):289–309

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3