On the empirical estimator of the boundary in inverse first-exit problems

Author:

Gür Sercan,Pötzelberger Klaus

Abstract

AbstractFirst-exit problems for the Brownian motion (W(t)) or general diffusion processes, have important applications. Given a boundary b(t), the distribution of the first-exit time $$\tau $$ τ has to be computed, in most cases numerically. In the inverse first-passage-time problems, the distribution of $$\tau $$ τ is given and the boundary b has to be found. The boundary and the density of $$\tau $$ τ satisfy a Volterra integral equation. Again numerical methods approximate the solution b for given distribution of $$\tau $$ τ . We propose and analyze estimators of b for a given sample $$\tau _1,\ldots ,\tau _n$$ τ 1 , , τ n of first-exit times. The first estimator, the empirical estimator, is the solution of a stochastic version of the Volterra equation. We prove that it is strongly consistent and we derive an upper bound for its asymptotics convergence rate. Finally, this estimator is compared to a Bayesian estimator, which is based on an approximate likelihood function. Monte Carlo experiments suggests that the empirical estimator is simple, computationally manageable and outperforms the alternative procedure considered in this paper.

Funder

Vienna University of Economics and Business

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3