Generative models and Bayesian inversion using Laplace approximation

Author:

Marschall ManuelORCID,Wübbeler GerdORCID,Schmähling FrankoORCID,Elster ClemensORCID

Abstract

AbstractThe Bayesian approach to solving inverse problems relies on the choice of a prior. This critical ingredient allows expert knowledge or physical constraints to be formulated in a probabilistic fashion and plays an important role for the success of the inference. Recently, Bayesian inverse problems were solved using generative models as highly informative priors. Generative models are a popular tool in machine learning to generate data whose properties closely resemble those of a given database. Typically, the generated distribution of data is embedded in a low-dimensional manifold. For the inverse problem, a generative model is trained on a database that reflects the properties of the sought solution, such as typical structures of the tissue in the human brain in magnetic resonance imaging. The inference is carried out in the low-dimensional manifold determined by the generative model that strongly reduces the dimensionality of the inverse problem. However, this procedure produces a posterior that does not admit a Lebesgue density in the actual variables and the accuracy attained can strongly depend on the quality of the generative model. For linear Gaussian models, we explore an alternative Bayesian inference based on probabilistic generative models; this inference is carried out in the original high-dimensional space. A Laplace approximation is employed to analytically derive the prior probability density function required, which is induced by the generative model. Properties of the resulting inference are investigated. Specifically, we show that derived Bayes estimates are consistent, in contrast to the approach in which the low-dimensional manifold of the generative model is employed. The MNIST data set is used to design numerical experiments that confirm our theoretical findings. It is shown that the approach proposed can be advantageous when the information contained in the data is high and a simple heuristic is considered for the detection of this case. Finally, the pros and cons of both approaches are discussed.

Funder

Physikalisch-Technische Bundesanstalt (PTB)

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3