Using contextual knowledge in interactive fault localization

Author:

Horváth FerencORCID,Beszédes Árpád,Vancsics Béla,Balogh Gergő,Vidács László,Gyimóthy Tibor

Abstract

AbstractTool support for automated fault localization in program debugging is limited because state-of-the-art algorithms often fail to provide efficient help to the user. They usually offer a ranked list of suspicious code elements, but the fault is not guaranteed to be found among the highest ranks. In Spectrum-Based Fault Localization (SBFL) – which uses code coverage information of test cases and their execution outcomes to calculate the ranks –, the developer has to investigate several locations before finding the faulty code element. Yet, all the knowledge she a priori has or acquires during this process is not reused by the SBFL tool. There are existing approaches in which the developer interacts with the SBFL algorithm by giving feedback on the elements of the prioritized list. We propose a new approach called iFL which extends interactive approaches by exploiting contextual knowledge of the user about the next item in the ranked list (e. g., a statement), with which larger code entities (e. g., a whole function) can be repositioned in their suspiciousness. We implemented a closely related algorithm proposed by Gong et al., called Talk. First, we evaluated iFL using simulated users, and compared the results to SBFL and Talk. Next, we introduced two types of imperfections in the simulation: user’s knowledge and confidence levels. On SIR and Defects4J, results showed notable improvements in fault localization efficiency, even with strong user imperfections. We then empirically evaluated the effectiveness of the approach with real users in two sets of experiments: a quantitative evaluation of the successfulness of using iFL, and a qualitative evaluation of practical uses of the approach with experienced developers in think-aloud sessions.

Funder

Ministry for Innovation and Technology

Magyar Tudományos Akadémia

European Social Fund

Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Artificial Intelligence National Laboratory Programme

EU

University of Szeged

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context Switch Sensitive Fault Localization;Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering;2024-06-18

2. DeepDebugger: An Interactive Time-Travelling Debugging Approach for Deep Classifiers;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30

3. Towards Context-Aware Spectrum-Based Fault Localization;2023 IEEE Conference on Software Testing, Verification and Validation (ICST);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3