Quick remedy commits and their impact on mining software repositories

Author:

Wen Fengcai,Nagy Csaba,Lanza Michele,Bavota GabrieleORCID

Abstract

AbstractMost changes during software maintenance and evolution are not atomic changes, but rather the result of several related changes affecting different parts of the code. It may happen that developers omit needed changes, thus leaving a task partially unfinished, introducing technical debt or injecting bugs. We present a study investigating “quick remedy commits” performed by developers to implement changes omitted in previous commits. With quick remedy commits we refer to commits that (i) quickly follow a commit performed by the same developer, and (ii) aim at remedying issues introduced as the result of code changes omitted in the previous commit (e.g., fix references to code components that have been broken as a consequence of a rename refactoring) or simply improve the previously committed change (e.g., improve the name of a newly introduced variable). Through a manual analysis of 500 quick remedy commits, we define a taxonomy categorizing the types of changes that developers tend to omit. The taxonomy can (i) guide the development of tools aimed at detecting omitted changes and (ii) help researchers in identifying corner cases that must be properly handled. For example, one of the categories in our taxonomy groups the reverted commits, meaning changes that are undone in a subsequent commit. We show that not accounting for such commits when mining software repositories can undermine one’s findings. In particular, our results show that considering completely reverted commits when mining software repositories accounts, on average, for 0.07 and 0.27 noisy data points when dealing with two typical MSR data collection tasks (i.e., bug-fixing commits identification and refactoring operations mining, respectively).

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Università della Svizzera italiana

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An empirical study on real bug fixes from solidity smart contract projects;Journal of Systems and Software;2023-10

2. Research on mining software repositories to facilitate refactoring;WIREs Data Mining and Knowledge Discovery;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3