Towards effective assessment of steady state performance in Java software: are we there yet?

Author:

Traini LucaORCID,Cortellessa VittorioORCID,Di Pompeo DanieleORCID,Tucci MicheleORCID

Abstract

AbstractMicrobenchmarking is a widely used form of performance testing in Java software. A microbenchmark repeatedly executes a small chunk of code while collecting measurements related to its performance. Due to Java Virtual Machine optimizations, microbenchmarks are usually subject to severe performance fluctuations in the first phase of their execution (also known as warmup). For this reason, software developers typically discard measurements of this phase and focus their analysis when benchmarks reach a steady state of performance. Developers estimate the end of the warmup phase based on their expertise, and configure their benchmarks accordingly. Unfortunately, this approach is based on two strong assumptions: (i) benchmarks always reach a steady state of performance and (ii) developers accurately estimate warmup. In this paper, we show that Java microbenchmarks do not always reach a steady state, and often developers fail to accurately estimate the end of the warmup phase. We found that a considerable portion of studied benchmarks do not hit the steady state, and warmup estimates provided by software developers are often inaccurate (with a large error). This has significant implications both in terms of results quality and time-effort. Furthermore, we found that dynamic reconfiguration significantly improves warmup estimation accuracy, but still it induces suboptimal warmup estimates and relevant side-effects. We envision this paper as a starting point for supporting the introduction of more sophisticated automated techniques that can ensure results quality in a timely fashion.

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OptiFeat: Enhancing Feature Selection, A Hybrid Approach Combining Subject Matter Expertise and Recursive Feature Elimination Method;2024-08-13

2. Evaluating Search-Based Software Microbenchmark Prioritization;IEEE Transactions on Software Engineering;2024-07

3. An Empirical Study on Code Coverage of Performance Testing;Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering;2024-06-18

4. Time Series Forecasting of Runtime Software Metrics: An Empirical Study;Proceedings of the 15th ACM/SPEC International Conference on Performance Engineering;2024-05-07

5. VAMP: Visual Analytics for Microservices Performance;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3