Towards Exploring the Limitations of Test Selection Techniques on Graph Neural Networks: An Empirical Study

Author:

Dang Xueqi,Li YinghuaORCID,Ma Wei,Guo Yuejun,Hu Qiang,Papadakis Mike,Cordy Maxime,Traon Yves Le

Abstract

AbstractGraph Neural Networks (GNNs) have gained prominence in various domains, such as social network analysis, recommendation systems, and drug discovery, due to their ability to model complex relationships in graph-structured data. GNNs can exhibit incorrect behavior, resulting in severe consequences. Therefore, testing is necessary and pivotal. However, labeling all test inputs for GNNs can be prohibitively costly and time-consuming, especially when dealing with large and complex graphs. In response to these challenges, test selection has emerged as a strategic approach to alleviate labeling expenses. The objective of test selection is to select a subset of tests from the complete test set. While various test selection techniques have been proposed for traditional deep neural networks (DNNs), their adaptation to GNNs presents unique challenges due to the distinctions between DNN and GNN test data. Specifically, DNN test inputs are independent of each other, whereas GNN test inputs (nodes) exhibit intricate interdependencies. Therefore, it remains unclear whether DNN test selection approaches can perform effectively on GNNs. To fill the gap, we conduct an empirical study that systematically evaluates the effectiveness of various test selection methods in the context of GNNs, focusing on three critical aspects: 1) Misclassification detection: selecting test inputs that are more likely to be misclassified; 2) Accuracy estimation: selecting a small set of tests to precisely estimate the accuracy of the whole testing set; 3) Performance enhancement: selecting retraining inputs to improve the GNN accuracy. Our empirical study encompasses 7 graph datasets and 8 GNN models, evaluating 22 test selection approaches. Our study includes not only node classification datasets but also graph classification datasets. Our findings reveal that: 1) In GNN misclassification detection, confidence-based test selection methods, which perform well in DNNs, do not demonstrate the same level of effectiveness; 2) In terms of GNN accuracy estimation, clustering-based methods, while consistently performing better than random selection, provide only slight improvements; 3) Regarding selecting inputs for GNN performance improvement, test selection methods, such as confidence-based and clustering-based test selection methods, demonstrate only slight effectiveness; 4) Concerning performance enhancement, node importance-based test selection methods are not suitable, and in many cases, they even perform worse than random selection.

Funder

Fonds National de la Recherche Luxembourg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3