An extended study on applicability and performance of homogeneous cross-project defect prediction approaches under homogeneous cross-company effort estimation situation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Software
Link
https://link.springer.com/content/pdf/10.1007/s10664-021-10103-4.pdf
Reference91 articles.
1. Amasaki S, Kawata K, Yokogawa T (2015) Improving Cross-Project defect prediction methods with data simplification. In: Proceedings of SEAA ’15. IEEE, pp 96–103
2. Amasaki S, Aman H, Yokogawa T (2020) An exploratory study on applicability of cross project defect prediction approaches to cross-company effort estimation. In: Proceedings of PROMISE, Association for Computing Machinery, pp 71–80
3. Bennin KE, Toda K, Kamei Y, Keung J, Monden A, Ubayashi N (2016) Empirical evaluation of cross-release effort-aware defect prediction models. In: Proceedings of International Conference on Software Quality, Reliability and Security, pp 214–221
4. Bin Y, Zhou K, Lu H, Zhou Y, Xu B (2017) Training data selection for cross-project defection prediction: Which approach is better?. In: Proceedings of International Symposium on Empirical Software Engineering and Measurement, ACM, pp 354–363
5. Boehm B (1981) Software engineering economics. Prentice-Hall
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving transfer learning for software cross-project defect prediction;Applied Intelligence;2024-04
2. Akka: Mutation Testing for Actor Concurrency in Akka using Real-World Bugs;Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2023-11-30
3. DBDNN-Estimator: A Cross-Project Number of Fault Estimation Technique;SN Computer Science;2023-11-20
4. Development of Homogenous Cross-Project Defect Prediction Model Using Artificial Neural Network;Advancements in Interdisciplinary Research;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3