Effects of variability in models: a family of experiments

Author:

Mahmood WardahORCID,Strüber Daniel,Anjorin Anthony,Berger Thorsten

Abstract

AbstractThe ever-growing need for customization creates a need to maintain software systems in many different variants. To avoid having to maintain different copies of the same model, developers of modeling languages and tools have recently started to provide implementation techniques for such variant-rich systems, notably variability mechanisms, which support implementing the differences between model variants. Available mechanisms either follow the annotative or the compositional paradigm, each of which have dedicated benefits and drawbacks. Currently, language and tool designers select the used variability mechanism often solely based on intuition. A better empirical understanding of the comprehension of variability mechanisms would help them in improving support for effective modeling. In this article, we present an empirical assessment of annotative and compositional variability mechanisms for three popular types of models. We report and discuss findings from a family of three experiments with 164 participants in total, in which we studied the impact of different variability mechanisms during model comprehension tasks. We experimented with three model types commonly found in modeling languages: class diagrams, state machine diagrams, and activity diagrams. We find that, in two out of three experiments, annotative technique lead to better developer performance. Use of the compositional mechanism correlated with impaired performance. For all three considered tasks, the annotative mechanism was preferred over the compositional one in all experiments. We present actionable recommendations concerning support of flexible, tasks-specific solutions, and the transfer of established best practices from the code domain to models.

Funder

Vetenskapsrådet

Wallenberg Academy

University of Gothenburg

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experience in Specializing a Generic Realization Language for SPL Engineering at Airbus;2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems (MODELS);2023-10-01

2. Software Systems Using Variability Approaches;2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA);2023-08-03

3. Union Models for Model Families: Efficient Reasoning over Space and Time;Algorithms;2023-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3