Abstract
AbstractJust-In-Time Software Defect Prediction (JIT-SDP) is concerned with predicting whether software changes are defect-inducing or clean. It operates in scenarios where labels of software changes arrive over time with delay, which in part corresponds to the time we wait to label software changes as clean (waiting time). However, clean labels decided based on waiting time may be different from the true labels of software changes, i.e., there may be label noise. This typically overlooked issue has recently been shown to affect the validity of continuous performance evaluation procedures used to monitor the predictive performance of JIT-SDP models during the software development process. It is still unknown whether this issue could potentially also affect evaluation procedures that rely on retrospective collection of software changes such as those adopted in JIT-SDP research studies, affecting the validity of the conclusions of a large body of existing work. We conduct the first investigation of the extent with which the choice of waiting time and its corresponding label noise would affect the validity of retrospective performance evaluation procedures. Based on 13 GitHub projects, we found that the choice of waiting time did not have a significant impact on the validity and that even small waiting times resulted in high validity. Therefore, (1) the estimated predictive performances in JIT-SDP studies are likely reliable in view of different waiting times, and (2) future studies can make use of not only larger (5k+ software changes), but also smaller (1k software changes) projects for evaluating performance of JIT-SDP models.
Funder
National Natural Science Foundation of China
Guangdong Key Laboratory of Fermentation and Enzyme Engineering
Guangdong Province Introduction of Innovative R&D Team
Research Institute of Trustworthy Autonomous Systems
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Post deployment recycling of machine learning models;Empirical Software Engineering;2024-06-15
2. A Just-in-time Software Defect Localization Method based on Code Graph Representation;Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension;2024-04-15