A comprehensive study of code-removal patches in automated program repair

Author:

Ginelli DavideORCID,Martinez MatiasORCID,Mariani LeonardoORCID,Monperrus MartinORCID

Abstract

AbstractAutomatic Program Repair (APR) techniques can promisingly help reduce the cost of debugging. Many relevant APR techniques follow the generate-and-validate approach, that is, the faulty program is iteratively modified with different change operators and then validated with a test suite until a plausible patch is generated. In particular, Kali is a generate-and-validate technique developed to investigate the possibility of generating plausible patches by only removing code. Former studies show that indeed Kali successfully addressed several faults. This paper addresses the single and particular case of code-removal patches in automated program repair. We investigate the reasons and the scenarios that make their creation possible, and the relationship with patches implemented by developers. Our study reveals that code-removal patches are often insufficient to fix bugs, and proposes a comprehensive taxonomy of code-removal patches that provides evidence of the problems that may affect test suites, opening new opportunities for researchers in the field of automatic program repair.

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking and Categorizing the Performance of Neural Program Repair Systems for Java;ACM Transactions on Software Engineering and Methodology;2024-08-19

2. A method to identify overfitting program repair patches based on expression tree;Science of Computer Programming;2024-07

3. Using the TypeScript compiler to fix erroneous Node.js snippets;2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM);2023-10-02

4. Program transformation landscapes for automated program modification using Gin;Empirical Software Engineering;2023-07

5. A Method to Identify Overfitting Program Repair Patches Based on Expression Tree;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3