Data-driven software design with Constraint Oriented Multi-variate Bandit Optimization (COMBO)

Author:

Ros RasmusORCID,Hammar Mikael

Abstract

Abstract Context Software design in e-commerce can be improved with user data through controlled experiments (i.e. A/B tests) to better meet user needs. Machine learning-based algorithmic optimization techniques extends the approach to large number of variables to personalize software to different user needs. So far the optimization techniques has only been applied to optimize software of low complexity, such as colors and wordings of text. Objective In this paper, we introduce the COMBO toolkit with capability to model optimization variables and their relationship constraints specified through an embedded domain-specific language. The toolkit generates personalized software configurations for users as they arrive in the system, and the configurations improve over time in in relation to some given metric. COMBO has several implementations of machine learning algorithms and constraint solvers to optimize the model with user data by software developers without deep optimization knowledge. Method The toolkit was validated in a proof-of-concept by implementing two features that are relevant to Apptus, an e-commerce company that develops algorithms for web shops. The algorithmic performance was evaluated in simulations with realistic historic user data. Results The validation shows that the toolkit approach can model and improve relatively complex features with many types of variables and constraints, without causing noticeable delays for users. Conclusions We show that modeling software hierarchies in a formal model facilitates algorithmic optimization of more complex software. In this way, using COMBO, developers can make data-driven and personalized software products.

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A theory of factors affecting continuous experimentation (FACE);Empirical Software Engineering;2023-12-13

2. Transition Algebra for Software Testing;IEEE Transactions on Reliability;2021-12

3. Vertical software controllable system design for grid service operation process;Journal of Physics: Conference Series;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3