Abstract
AbstractDespite its massive popularity as a programming language, especially in novel domains like data science programs, there is comparatively little research about fault localization that targets Python. Even though it is plausible that several findings about programming languages like C/C++ and Java—the most common choices for fault localization research—carry over to other languages, whether the dynamic nature of Python and how the language is used in practice affect the capabilities of classic fault localization approaches remain open questions to investigate. This paper is the first multi-family large-scale empirical study of fault localization on real-world Python programs and faults. Using Zou et al.’s recent large-scale empirical study of fault localization in Java (Zou et al. 2021) as the basis of our study, we investigated the effectiveness (i.e., localization accuracy), efficiency (i.e., runtime performance), and other features (e.g., different entity granularities) of seven well-known fault-localization techniques in four families (spectrum-based, mutation-based, predicate switching, and stack-trace based) on 135 faults from 13 open-source Python projects from the BugsInPy curated collection (Widyasari et al. 2020). The results replicate for Python several results known about Java, and shed light on whether Python’s peculiarities affect the capabilities of fault localization. The replication package that accompanies this paper includes detailed data about our experiments, as well as the tool FauxPy that we implemented to conduct the study.
Funder
Schweizerische Nationalfonds
Publisher
Springer Science and Business Media LLC