1. Abuhamad M, AbuHmed T, Mohaisen A, Nyang D (2018) Large-scale and language-oblivious code authorship identification. In: Lie D, Mannan M, Backes M, Wang X (eds) Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, CCS 2018, Toronto, ON, Canada, October 15–19, 2018. https://doi.org/10.1145/3243734.3243738. ACM, pp 101–114
2. Allamanis M, Barr ET, Bird C, Sutton CA (2014) Learning natural coding conventions. In: Cheung S, Orso A, Storey MD (eds) Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, (FSE-22), Hong Kong, China, November 16–22, 2014. https://doi.org/10.1145/2635868.2635883. ACM, pp 281–293
3. Allamanis M, Barr ET, Bird C, Sutton CA (2015) Suggesting accurate method and class names. In: Nitto ED, Harman M, Heymans P (eds) Proceedings of the 2015 10th joint meeting on foundations of software engineering, ESEC/FSE 2015, Bergamo, Italy, August 30–September 4, 2015. https://doi.org/10.1145/2786805.2786849. ACM, pp 38–49
4. Allamanis M, Peng H, Sutton CA (2016) A convolutional attention network for extreme summarization of source code. In: Balcan M, Weinberger KQ (eds) Proceedings of the 33nd international conference on machine learning, ICML 2016, New York City, NY, USA, June 19–24, 2016, JMLR.org, JMLR Workshop and Conference Proceedings. http://proceedings.mlr.press/v48/allamanis16.html, vol 48, pp 2091–2100
5. Allamanis M, Brockschmidt M, Khademi M (2018) Learning to represent programs with graphs. In: 6th International conference on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018. Conference Track Proceedings, OpenReview.net. https://openreview.net/forum?id=BJOFETxR-