Towards a recipe for language decomposition: quality assessment of language product lines

Author:

Cazzola WalterORCID,Favalli Luca

Abstract

AbstractProgramming languages are complex systems that are usually implemented as monolithic interpreters and compilers. In recent years, researchers and practitioners gained interest in product line engineering to improve the reusability of language assets and the management of variability-rich systems, introducing the notions of language workbenches and language product lines (LPLs). Nonetheless, language development remains a complex activity and design or implementation flaws can easily waste the efforts of decomposing a language specification into language features. Poorly designed language decompositions result in high inter-dependent components, reducing the variability space of the LPL system and its maintainability. One should detect and fix the design flaws posthaste to prevent these risks while minimizing the development overhead. Therefore, various aspects of the quality of a language decomposition should be quantitatively measurable through adequate metrics. The evaluation, analysis and feedback of these measures should be a primary part of the engineering process of a LPL. In this paper, we present an exploratory study trying to capture these aspects by introducing a design methodology for LPLs; we define the properties of a good language decomposition and adapt a set of metrics from the literature to the framework of language workbenches. Moreover, we leverage the LPL engineering environment to perform an empirical evaluation of 26 -based LPLs based on this design methodology. Our contributions form the foundations of a design methodology for -based LPLs. This methodology is comprised of four different elements: i) an engineering process that defines the order in which decisions are made, ii) an integrated development environment for LPL designers and iii) some best practices in the design of well-structured language decomposition when using , supported by iv) a variety of LPL metrics that can be used to detect errors in design decisions.

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exceptions all Over the Shop: Modular, Customizable, Language-Independent Exception Handling Layer;Proceedings of the 16th ACM SIGPLAN International Conference on Software Language Engineering;2023-10-23

2. Scrambled Features for Breakfast: Concepts of Agile Language Development;Communications of the ACM;2023-10-20

3. On measuring coupling between microservices;Journal of Systems and Software;2023-06

4. Evaluating a Language Workbench: from Working Memory Capacity to Comprehension to Acceptance;2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC);2023-05

5. The language mutation problem: Leveraging language product lines for mutation testing of interpreters;Journal of Systems and Software;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3