1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) Tensorflow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/ Software available from tensorflow.org
2. Allamanis M, Barr ET, Bird C, Sutton C (2015) Suggesting accurate method and class names. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering (ESEC/FSE 2015). ACM, New York, pp 38–49, DOI https://doi.org/10.1145/2786805.2786849, (to appear in print)
3. Allamanis M, Brockschmidt M, Khademi M (2017) Learning to represent programs with graphs. arXiv:1711.00740 [cs]
4. Allamanis M, Barr ET, Devanbu P, Sutton C (2018) A survey of machine learning for big code and naturalness. ACM Comput Surv 51(4):Article 81, 37 pp. https://doi.org/10.1145/3212695
5. Alon U, Zilberstein M, Levy O, Yahav E (2019) code2vec: learning distributed representations of code. In: Proceedings of the ACM on programming languages 3, POPL, pp 1–29