Modeling function-level interactions for file-level bug localization
Author:
Publisher
Springer Science and Business Media LLC
Subject
Software
Link
https://link.springer.com/content/pdf/10.1007/s10664-022-10237-z.pdf
Reference60 articles.
1. Abozeed SM, ElNainay MY, Fouad SA, Abougabal MS (2020) Software bug prediction employing feature selection and deep learning. In: 2019 International conference on advances in the emerging computing technologies (AECT), pp 1–6
2. Abreu R, Zoeteweij P, Van Gemund AJ (2007) On the accuracy of spectrum based fault localization. In: Testing: academic and industrial conference practice and research techniques-MUTATION, 2007. TAICPART-MUTATION 2007. IEEE, pp 89–98
3. Abreu R, Zoeteweij P, van Gemund AJC (2006) An evaluation of similarity coefficients for software fault localization. In: 12th IEEE Pacific Rim international symposium on dependable computing (PRDC 2006), 18-20 December 2006, University of California, Riverside, USA. IEEE Computer Society, pp 39–46
4. Akbar SA, Kak AC (2020) A large-scale comparative evaluation of IR-based tools for bug localization. In: Proceedings of the 17th international conference on mining software repositories. Association for Computing Machinery, New York, pp 21–31
5. Almhana R, Kessentini M, Mkaouer W (2021) Method-level bug localization using hybrid multi-objective search. Inf Softw Technol 131:106474
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. FusionFL: A Statement-Level Feature Fusion Based Fault Localization Approach;2024 IEEE Conference on Software Testing, Verification and Validation (ICST);2024-05-27
2. Machine Learning-based Models for Predicting Defective Packages;2024 The 8th International Conference on Machine Learning and Soft Computing;2024-01-26
3. Studying the Influence and Distribution of the Human Effort in a Hybrid Fitness Function for Search-Based Model-Driven Engineering;IEEE Transactions on Software Engineering;2023-12
4. Enhancing Bug Localization through Bug Report Summarization;2023 IEEE International Conference on Data Mining (ICDM);2023-12-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3